Posts

Smart Handpumps feature at the Department for International Development on World Water Day

Today Oxford University’s Dr. Rob Hope presents research on Smart Handpump technology at the UK Department for International Development, as part of their celebrations for World Water Day 2013.

The seminar A Life (in a Day) of a Girl will consider how water impacts on the life of a girl, from her birth, to school, adolescence, through to adulthood. Experts from the Department for International Development (DFID), universities and NGOs will discuss key issues such as early childhood development, childhood undernutrition, menstrual hygiene, reproductive health, the burden of water collection, and technology.

The Smart Handpumps project is led by Oxford’s School of Geography and the Environment. The technology consists of a GSM-enabled transmitter, securely located within the handle of the pump. The transmitter is programmed to send periodic SMS messages detailing pump usage which are transmitted cheaply and automatically over the GSM network.

Immediate detection of handpump failure can help ensure that repairs are made quickly and open-access data can improve the monitoring and regulation of water service delivery. Mobile networks allow for the scaled-up management of multiple handpumps, thereby reducing operational and financial costs.

Field trials in rural Kenya have been running since August 2012 and are being expanded with support from DFID and the Economic and Social Research Council (ESRC). The interdisciplinary project team is made up of Geographers, Engineers, Economists and Public Health experts from a number of departments across the University. Other partners include the Government of Kenya, UNICEF, GSMA and Rural Focus Ltd. (Kenya).

 

View the Smart Handpumps poster

Watch the Smart Handpumps video

Read more about the Smart Handpumps project

Water supply one of World Economic Forum’s top global risks

Experts rate water supply crisis as one of the world’s greatest risks according to the World Economic Forum’s Global Risks 2013, an annual report that identifies and quantifies risks to global security.

Water supply crises are rated as the highest societal risk. In terms of impact, they are rated as the second highest risk, maintaining this position from 2012, and previously absent from the top five during the years 2007-2011. Water supply is identified as the fourth highest global risk in terms of likelihood, an increase from its position at fifth in 2012, and again absent from the top five in the previous five reports.

Water supply crises are defined as the decline in the quality and quantity of fresh water combined with increased competition among resource-intensive systems, such as food and energy production.

Related risks identified by the report include food shortage crises (rated fourth for impact) and rising greenhouse gas emissions (rated third in terms of likelihood). Rising food insecurity and aggravated water scarcity are highlighted as possible impacts of global warming. The report urges for ‘climate smart’ decision-making to form an integral part of food and water management and policies. Such a mindset would see climate change analysis incorporated into strategic and operational decision-making.

The Global Risks report is based on an annual survey of over 1,000 experts from government, research, industry and civil society. Download the full report

 

Award-winning programme uses carbon credits to deliver safe water in Kenya

In 2011, nearly 900,000 water filters were distributed to households in Western Kenya, promising access to safe drinking water for 4.5 million people. Oxford University is leading research to evaluate the programme’s impact on diarrhoea, dysentery and dehydration among children under five and people living with HIV.

LifeStraw® Carbon for Water is an innovative public health programme which distributes LifeStraw Family water filters to households in Western Kenya, enabling citizens to safely treat water in their own home.

The ten-year programme is implemented by the private company Vestergaard Frandsen in partnership with the Kenyan Government. It is one of the largest water treatment programmes realised without public-sector funding, and the first ever to be supported by carbon financing.

By using LifeStraw filters, families no longer need to purify their water through boiling, which means less firewood is burned as fuel. Vestergaard Frandsen claims carbon credits for the greenhouse gas emissions saved, which can then be sold and the revenue used to cover programme costs.

Crucially, carbon credits can only be obtained once it is shown that the filters are being regularly used. The certification methodology was designed by the Oxford-based organisation ClimateCare, and ensures that the programme delivers real and long-lasting sustainable development benefits. This results-driven system incentivises important investments in health education and robust monitoring systems.

The programme was chosen by the United Nations Climate Framework Convention on Climate Change (UNFCCC) as one of their landmark ‘lighthouse activities’ which help developing countries to curb their greenhouse gas emissions or adapt to climate change. It will be showcased at the COP18 Climate Change Conference in Doha, Qatar, at the end of November.

It is expected that the use of LifeStraw, alongside the provision of health and hygiene education, will significantly reduce the risk of contamination and illness. Dr John Haskew, an Academic Clinic Fellow at Oxford University’s Department for Public Health, is leading the health impact evaluation, which makes use of cutting-edge mobile phone technology and electronic medical records.

The health impact studies focus on populations most vulnerable to water-borne diseases. The Oxford-led team is evaluating the impact of the programme on diarrhoea and dehydration among children under five years old. They will also establish whether the use of LifeStraw can reduce rates of diarrhoea and infection among people with HIV, and even delay the development of the HIV disease itself.

Watch a video about the LifeStraw Carbon for Water programme

A new owner of a LifeStraw Family water filter in Western Province, Kenya. Photo: Vestergaard Frandsen

Mobile money and water services in East Africa

The unprecedented growth in Africa’s mobile communications sector offers new opportunities to address the continent’s persistent water service challenges, claims a new article published in Water International, a collaboration between past and current students at the School of Geography and the Environment.

The article is co-authored by two current DPhil students, Tim Foster and Aaron Krolikowski, a current student of the MSc Water Science, Policy and Management, Cliff Nyaga, and a former MSc student, Ilana Cohen. The research stems from Oxford University’s thriving mobile/water for development (mw4d) initiative.

The concept of mobile money is simple – money can be transferred between electronic accounts and the payment system can be easily accessed using a standard mobile phone.

A number of water service providers in Africa have started offering their customers mobile money as a payment option. This alluring marriage between water services and mobile technology offers many potential benefits.

For customers, mobile money provides an easy, fast and convenient payment method, particularly for the millions of people without a bank account or a branch nearby. For water utilities, the direct electronic transfer of money should reduce transaction costs and improve their revenue collection; savings which could then be channelled into extending coverage and improving the quality of services.

This could go some way towards addressing the considerable challenges faced by Africa’s water service sector. Service providers are commonly caught in a downward spiral of deteriorating finances, infrastructure, and operational performance. In urban areas, the expansion of service coverage is failing to keep apace with population growth, meaning that the number of urban Africans without access to a safe water supply is actually increasing.

However, there is very little evidence to determine whether the alleged benefits of mobile water payments are being seen. The new research by Oxford University investigates the impacts of mobile water payments in East Africa and explores customer behaviour and barriers to uptake.

The study shows that uptake of mobile water payments is surprisingly low.  In Dar es Salaam, a free mobile payment option has failed to attract more than 1% of customers. There are a number of reasons for its limited success, including low customer awareness, lack of utility receipts for proof of payment, and high transaction tariffs charged by mobile network operators then passed on to customers.

However, one success story shines. In the community of Kiamumbi in Kenya, a remarkable 80% of customers opt to pay their water bills with mobile money. The research confirms that these customers make considerable savings of time and money, and are also more likely to pay their bills on time.

Fortunately, the common barriers to wider uptake of mobile water payments can be tackled by the water service providers themselves. Once behavioural and operational constraints are overcome, the real test will be whether the savings made through the use of this payment tool are translated into improved access to and sustainability of water services.

Reference

Foster, T., Hope, R., Thomas, M., Cohen, I., Krolikowski, A. and Nyaga, C. (2012) Impacts and implications of mobile water payments in East Africa. Water International. DOI:10.1080/02508060.2012.738409

Dr Rene Bañares-Alcántara develops new optimisation model for analysis and evaluation of water policies

Rene Bañares-Alcántara and Aidid Chee Tahi from Oxford University’s Department of Engineering Science have developed a new modelling system which can help policymakers evaluate water policies. The modelling system was presented at the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting.

Rene Bañares-Alcántara presented the paper ‘A semantic representation of policy goals in the modeling of electricity generation and water treatment systems’ at the AIChE Annual Meeting on Monday 29 October in Pittsburgh, Pennsylvania. The event is an educational forum for chemical engineers interested in innovation and professional growth, and aims to promote ‘cleaner energy, stronger economy, and better living’.

The paper introduces a modelling system which can be used for the analysis and evaluation of water policies, including those aimed at ensuring water supply security and sustainability.

Optimisation models are useful tools for policymakers because they allow different scenarios to be evaluated during the formulation of energy and water policies. Existing models are based solely on mathematical equations that process numerical data, and policy goals set by the policymaker must first be translated into mathematical information that can be input into the model. However, a complete consideration of energy and water policies also requires evaluating non-numerical data, such as social and political issues.

The model proposed in Rene’s paper breaks new ground by considering both numerical and non-numerical information. It supports policymakers by converting their policy goals into information usable by the optimisation model. A prototype water modelling system was developed and applied to a case study of the state of Penang in Malaysia. A water model was created automatically from a set of water policy goals, and then optimised to generate a water treatment and supply system.

The full extended abstract is available from the event website

Dr Rene Bañares-Alcántara is a Reader in Engineering Science and leads the Systems Engineering Group at the Department of Engineering Science.

Photo credit: AIChE

Smart Handpumps feature on BBC Click

Oxford University’s Smart Handpumps project, part of the mobile/water for development (mm4d) initiative, aims to improve rural water security by automatically monitoring handpump performance which trigger maintenance responses. The handpump technology uses data transmitters which fit inside handpumps and send text messages to a central office if the devices break down. The research initiative is a collaboration between the School of Geography and the Environment, and the Department for Engineering Science, led by Dr Rob Hope and Patrick Thomson in partnership with Dr Gari Clifford.

Story starts at 6 minutes 36 seconds